6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
\int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex]
\int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex]


&= \left[\ln|\secx|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]
&= \left[\ln(\secx)+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]


&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]
&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]

Revision as of 22:55, 28 September 2022


Failed to parse (unknown function "\secx"): {\displaystyle \begin{align} \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex] &= \left[\ln(\secx)+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex] &= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex] &= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex] &= \frac{14}{3} \end{align} }