6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 44: Line 44:


\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex]
\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex]
&= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex]
&= \left[-2\cos(x)-ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3} \\[2ex]
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex]
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex]
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex]
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex]

Revision as of 23:07, 28 September 2022



Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex] &= \left[-2\cos(x)-ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3} \\[2ex] &= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex] &= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex] &= \frac{64}{3} \end{align} }