6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
</math>
</math>


<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}</math>
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = -2\ln(2)-1-1+4 = -2\ln(2)+2</math>




Line 46: Line 46:
&= \left[-2\cos(x)-\ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex]
&= \left[-2\cos(x)-\ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex]
&= \left[-2\cos(\frac{\pi}{3})-\ln|sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|sec(0)|\right] \\[2ex]
&= \left[-2\cos(\frac{\pi}{3})-\ln|sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|sec(0)|\right] \\[2ex]
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = 32-\frac{32}{3} \\[2ex]
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1+4 \\[2ex]
&= \frac{64}{3}
&= -1+4


\end{align}
\end{align}

Revision as of 23:17, 28 September 2022