5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>
<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>


so
so using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}*u^3 du</math>
 
using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>


which is equal to <math>(3)*f(1-3x)</math>
which is equal to <math>(3)*f(1-3x)</math>


which is=<math>3*(1-3x)^3*\frac{1}{(1+(1-3x)^2)}</math>
which is=<math>3*\frac{(1-3x)^3}{(1+(1-3x)^2)}</math>
  or simplified to <math>\frac{3*(1-3x)^3}{(1+(1-3x)^2)}</math>
  or simplified to <math>\frac{3*(1-3x)^3}{(1+(1-3x)^2)}</math>



Revision as of 18:50, 25 August 2022

FTC #1

or in other words is

so using the formula we get y=

which is equal to

which is=

or simplified to 



1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53