5.3 The Fundamental Theorem of Calculus/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
FTC # 2- the <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is F(b)-F(a) where F is the antiderivitive of f such that <math>F^\prime=f</math> | FTC # 2- the <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is F(b)-F(a) where F is the antiderivitive of f such that <math>F^\prime=f</math> | ||
<math>\int\limits_{1/2}^{(\sqrt{3})/2}\frac{6}{(\sqrt{1-x^2})} du </math> | 37) <math>\int\limits_{1/2}^{(\sqrt{3})/2}\frac{6}{(\sqrt{1-x^2})} du </math> | ||
[[5.3 The Fundamental Theorem of Calculus/1|1]] | [[5.3 The Fundamental Theorem of Calculus/1|1]] |