5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
FTC #1- <math>G(x)=f^\prime(x)</math> or in other words <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math> | FTC #1- <math>G(x)=f^\prime(x)</math> or in other words <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math> | ||
17)<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math> | 17) <math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math> | ||
so using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> | so using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> |