5.3 The Fundamental Theorem of Calculus/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math>\int_{0}^{\frac{pi}{4}}\sec^2(t)dt</math> <math> = tan(\frac{pi}{4})-tan(0)</math> <math> = 1-0 = 1</math>")
 
No edit summary
Line 1: Line 1:
<math>\int_{0}^{\frac{pi}{4}}\sec^2(t)dt</math>
<math>\int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt


  <math> = tan(\frac{pi}{4})-tan(0)</math>
  = tan(\frac{\pi\}{4})-tan(0)


  <math> = 1-0 = 1</math>
  = 1-0 = 1</math>

Revision as of 19:07, 25 August 2022

Failed to parse (syntax error): {\displaystyle \int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt = tan(\frac{\pi\}{4})-tan(0) = 1-0 = 1}