5.3 The Fundamental Theorem of Calculus/31: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\int_{0}^{\frac{pi}{4}}\sec^2(t)dt</math> <math> = tan(\frac{pi}{4})-tan(0)</math> <math> = 1-0 = 1</math>") |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{0}^{\frac{pi}{4}}\sec^2(t)dt | <math>\int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt | ||
= tan(\frac{\pi\}{4})-tan(0) | |||
= 1-0 = 1</math> |
Revision as of 19:07, 25 August 2022
Failed to parse (syntax error): {\displaystyle \int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt = tan(\frac{\pi\}{4})-tan(0) = 1-0 = 1}