5.3 The Fundamental Theorem of Calculus/31: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt | <math>\int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt | ||
=tan(\frac{\pi\}{4})-tan(0) | |||
=1-0 = 1</math> | |||
Revision as of 19:08, 25 August 2022
Failed to parse (syntax error): {\displaystyle \int_{0}^{\frac{\pi\}{4}}\sec^2(t)dt =tan(\frac{\pi\}{4})-tan(0) =1-0 = 1}