5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
17) <math>g(x)=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>
17) <math>g(x)=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>


<math>g\prime(x)=d/dx(\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du) =(0)*f(1)-(-3)*f(1-3x)</math>
<math>g\prime(x)=\frac{d}{dx}\left(\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du\right) =(0)*f(1)-(-3)*f(1-3x)</math>


which is equal to <math>(3)*f(1-3x)</math>
which is equal to <math>(3)*f(1-3x)</math>

Revision as of 19:27, 25 August 2022

FTC #1- or in other words is

17)

which is equal to

which is=

or simplified to 



1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53