5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
17)<math>\int_{}^{}1+tan^2xdx</math> =
17)<math>\int_{}^{}1+tan^2xdx</math> =
  <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
  <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math>  
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> =<math>\cos^2x+sin^2x=1</math> thus,
<math>\cos^2x+sin^2x=1</math>
 


[[5.3 The Fundamental Theorem of Calculus/1|1]]
[[5.3 The Fundamental Theorem of Calculus/1|1]]

Revision as of 06:53, 29 August 2022

17) =

 = 

= thus,


1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53