5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
& \int_{-2}^{2}({3u+1})^2 du \\[2ex]
& \int_{-2}^{2}({3u+1})^2 du \\[2ex]


& \int {3u^2+6u+1} {du} \\[2ex]
&= \int {3u^2+6u+1} {du} \\[2ex]


& {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]
&= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]


& {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex]
&= {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex]


& = {52}  
& = {52}  

Revision as of 18:44, 1 September 2022