5.3 The Fundamental Theorem of Calculus/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1
<math>  
 
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1
</math>
</math>
Therefore, <math> \int_{0}^\frac{\pi}{4}sec^{2}(t)dt = 1 </math>
(Use FTC #2,) <math> \int_{a}^{b}f(x)dt = F(b)-F(a) </math>

Revision as of 21:23, 6 September 2022