6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
\tan(x)-2\sin(x) &= 0 \\
\tan(x)-2\sin(x) &= 0 \\
  x &= 0 \\
  x &= 0 \\
\end{align}
</math>
<math>\int_{-3}^{3} \left|(8-x^2) - (x^2)\right|dx = \int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx + \int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx + \int_{2}^{3}\left((x^2)-(8-x^2)\right)dx = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}</math>
<math>
\begin{align}
\int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx &= \int_{-3}^{-2}\left(2x^2-8)\right)dx \\[2ex]
&= \left[\frac{2x^3}{3}-8x\right]\Bigg|_{-3}^{-2} \\[2ex]
&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]
&= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex]
&= \frac{14}{3}
\end{align}
</math>
<math>
\begin{align}
\int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex]
&= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex]
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex]
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex]
&= \frac{64}{3}


\end{align}
\end{align}
</math>
</math>

Revision as of 19:59, 20 September 2022