6.1 Areas Between Curves/15: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 21: | Line 21: | ||
</math> | </math> | ||
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = -2\ln(2)-1-1+4 = -2\ln(2)+2</math> | <math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = -2\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-1-1+4 = -2\ln(2)+2</math> | ||
Line 46: | Line 46: | ||
&= \left[-2\cos(x)-\ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex] | &= \left[-2\cos(x)-\ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex] | ||
&= \left[-2\cos(\frac{\pi}{3})-\ln|sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|sec(0)|\right] \\[2ex] | &= \left[-2\cos(\frac{\pi}{3})-\ln|sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|sec(0)|\right] \\[2ex] | ||
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1+ | &= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex] | ||
&= -1+ | &= -1-\ln(2)+2 | ||
\end{align} | \end{align} |
Revision as of 23:19, 28 September 2022