6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 30: Line 30:
&= \left[\ln|\sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]
&= \left[\ln|\sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]


&= \left[\ln|sec(0)|+2\cos(0)\right]-\left[\ln|sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex]
&= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex]


&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = -2\ln(2)-1 \\[2ex]
&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = -2\ln(2)-1 \\[2ex]
Line 44: Line 44:


\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex]
\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex]
&= \left[-2\cos(x)-\ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex]
&= \left[-2\cos(x)-\ln|\sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex]
&= \left[-2\cos(\frac{\pi}{3})-\ln|sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|sec(0)|\right] \\[2ex]
&= \left[-2\cos(\frac{\pi}{3})-\ln|\sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|\sec(0)|\right] \\[2ex]
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex]
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex]
&= -1-\ln(2)+2
&= -1-\ln(2)+2

Revision as of 23:21, 28 September 2022