6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
</math>
</math>


<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = -2\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-1-1+4 = -2\ln(2)+2</math>
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = -2\ln(2)-1-1-\ln(2)+2 = 2-\ln(2)-1-1+4 = -2\ln(2)+2</math>




Line 32: Line 32:
&= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex]
&= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex]


&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = -2\ln(2)-1 \\[2ex]
&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = 2-\ln(2)-1 \\[2ex]


&= -2\ln(2)-1
&= 2-\ln(2)-1


\end{align}
\end{align}

Revision as of 23:24, 28 September 2022