Math
Basics[edit]
To render any math equation, the math equation must be between <math></math>
i.e., <math>f(x)=x^2</math>
gives .
Common math commands[edit]
Superscript & Subscript[edit]
Superscript: <math>x^{5+y}</math>
gives
Subscript: <math>x_{5+t}</math>
gives
Together: <math>x_{5+t}^{5+y}</math>
gives
Fractions, radicals and brackets[edit]
Fractions: <math>\frac{1}{x}</math>
gives
Bad brackets, parentheses, etc.: <math>(\frac{1}{x})^3</math>
gives
Correct brackets, parentheses, etc.: <math>\left(\frac{1}{x}\right)^3</math>
gives
Square root: <math>\sqrt{x+1}</math>
gives
General radical: <math>\sqrt[3]{64}=4</math>
gives
Trig. & Log Functions[edit]
Sin, cos, tan, etc.: <math>\sin{(\theta)}</math>
gives
Arcsin, arccos, arctan, etc.: <math>\arcsin{(\theta)}</math>
gives
Log: <math>\log_{5}{5^2}=2</math>
gives
Ln: <math>\ln{e^3}=3</math>
gives
Calculus[edit]
Sum: <math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math>
gives
Limit: <math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math>
gives
Derivative: <math>\frac{d}{dx}\left[\frac{1}{x}\right]=-\frac{1}{x^2}</math>
gives
Integral: <math>\int_{1}^{x+1}\frac{1}{r}dr</math>
gives
Limit bar: <math>\bigg|_{0}^{1}</math>
gives
Advanced[edit]
Sometimes it might be necessary to break up and align a long equation such as:
To do this use &=
where the equation =
should align and put \begin{align} and \end{align}
at the start and end of <math></math>
. Finally use \\[2ex]
to create the proper space between the lines (if they're too close) and to push the rest of the equation to the next line. Note: //
pushes the line down and [2ex]
spaces the line. The number 2 can be changed for more or less spacing between the lines. The code below renders what is seen above:
<math>
\begin{align}
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex]
&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex]
&= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex]
&= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5}
\end{align}
</math>