y = tan ( x ) y = 2 sin ( x ) x = − 3 x = 3 {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\tan(x)} &\color {royalblue}\mathbf {y=2\sin(x)} \\&x=-3&x=3\\\end{aligned}}}
∫ − π 3 π 3 [ ( 8 − x 2 ) − ( x 2 ) ] d x {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(8-x^{2})-(x^{2})\right]dx}
tan ( x ) = 2 sin ( x ) tan ( x ) − 2 sin ( x ) = 0 x = 0 {\displaystyle {\begin{aligned}\tan(x)&=2\sin(x)\\\tan(x)-2\sin(x)&=0\\x&=0\\\end{aligned}}}