y = tan ( x ) y = 2 sin ( x ) x = − π 3 x = π 3 {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\tan(x)} &\color {royalblue}\mathbf {y=2\sin(x)} \\&x=-{\frac {\pi }{3}}&x={\frac {\pi }{3}}\\\end{aligned}}}
∫ − π 3 π 3 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(\tan(x))-(2\sin(x))\right]dx}
tan ( x ) = 2 sin ( x ) tan ( x ) − 2 sin ( x ) = 0 x = 0 {\displaystyle {\begin{aligned}\tan(x)&=2\sin(x)\\\tan(x)-2\sin(x)&=0\\x&=0\\\end{aligned}}}