y = tan ( x ) y = 2 sin ( x ) x = − π 3 x = π 3 {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\tan(x)} &\color {royalblue}\mathbf {y=2\sin(x)} \\&x=-{\frac {\pi }{3}}&x={\frac {\pi }{3}}\\\end{aligned}}}
∫ − π 3 π 3 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(\tan(x))-(2\sin(x))\right]dx}
tan ( x ) = 2 sin ( x ) tan ( x ) − 2 sin ( x ) = 0 x = 0 {\displaystyle {\begin{aligned}\tan(x)&=2\sin(x)\\\tan(x)-2\sin(x)&=0\\x&=0\\\end{aligned}}}
∫ − 3 3 | ( 8 − x 2 ) − ( x 2 ) | d x = ∫ − 3 − 2 ( ( x 2 ) − ( 8 − x 2 ) ) d x + ∫ − 2 2 ( ( 8 − x 2 ) − ( x 2 ) ) d x + ∫ 2 3 ( ( x 2 ) − ( 8 − x 2 ) ) d x = 14 3 + 64 3 + 14 3 = 92 3 {\displaystyle \int _{-3}^{3}\left|(8-x^{2})-(x^{2})\right|dx=\int _{-3}^{-2}\left((x^{2})-(8-x^{2})\right)dx+\int _{-2}^{2}\left((8-x^{2})-(x^{2})\right)dx+\int _{2}^{3}\left((x^{2})-(8-x^{2})\right)dx={\frac {14}{3}}+{\frac {64}{3}}+{\frac {14}{3}}={\frac {92}{3}}}
∫ − 3 − 2 ( ( x 2 ) − ( 8 − x 2 ) ) d x = ∫ − 3 − 2 ( 2 x 2 − 8 ) ) d x = [ 2 x 3 3 − 8 x ] | − 3 − 2 = [ 2 ( − 2 ) 3 3 − 8 ( − 2 ) ] − [ 2 ( − 3 ) 3 3 − 8 ( − 3 ) ] = [ − 16 3 + 16 ] − [ − 54 3 + 24 ] = 38 3 − 8 = 14 3 {\displaystyle {\begin{aligned}\int _{-3}^{-2}\left((x^{2})-(8-x^{2})\right)dx&=\int _{-3}^{-2}\left(2x^{2}-8)\right)dx\\[2ex]&=\left[{\frac {2x^{3}}{3}}-8x\right]{\Bigg |}_{-3}^{-2}\\[2ex]&=\left[{\frac {2(-2)^{3}}{3}}-8(-2)\right]-\left[{\frac {2(-3)^{3}}{3}}-8(-3)\right]\\[2ex]&=\left[{\frac {-16}{3}}+16\right]-\left[{\frac {-54}{3}}+24\right]={\frac {38}{3}}-8\\[2ex]&={\frac {14}{3}}\end{aligned}}}
∫ − 2 2 ( ( 8 − x 2 ) − ( x 2 ) ) d x = ∫ − 2 2 ( 8 − 2 x 2 ) d x = [ 8 x − 2 x 3 3 ] | − 2 2 = [ 8 ( 2 ) − 2 ( 2 ) 3 3 ] − [ 8 ( − 2 ) − 2 ( − 2 ) 3 3 ] = [ 16 − 16 3 ] − [ − 16 + 16 3 ] = 32 − 32 3 = 64 3 {\displaystyle {\begin{aligned}\int _{-2}^{2}\left((8-x^{2})-(x^{2})\right)dx&=\int _{-2}^{2}\left(8-2x^{2}\right)dx\\[2ex]&=\left[8x-{\frac {2x^{3}}{3}}\right]{\Bigg |}_{-2}^{2}\\[2ex]&=\left[8(2)-{\frac {2(2)^{3}}{3}}\right]-\left[8(-2)-{\frac {2(-2)^{3}}{3}}\right]\\[2ex]&=\left[16-{\frac {16}{3}}\right]-\left[-16+{\frac {16}{3}}\right]=32-{\frac {32}{3}}\\[2ex]&={\frac {64}{3}}\end{aligned}}}