17) ∫ 1 + t a n 2 x d x {\displaystyle \int _{}^{}1+tan^{2}xdx} = ∫ 1 + s i n 2 x c o s 2 x d x {\displaystyle \int _{}^{}1+{\frac {sin^{2}x}{cos^{2}x}}dx} = ∫ c o s 2 x + s i n 2 x c o s 2 x d x {\displaystyle \int _{}^{}{\frac {cos^{2}x+sin^{2}x}{cos^{2}x}}dx} = cos 2 x + s i n 2 x = 1 {\displaystyle \cos ^{2}x+sin^{2}x=1} thus, ∫ 1 c o s 2 x d x {\displaystyle \int _{}^{}{\frac {1}{cos^{2}x}}dx} = <math>\int_{}^{}sec^2xdx
1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53