y = tan ( x ) y = 2 sin ( x ) x = − π 3 x = π 3 {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\tan(x)} &\color {royalblue}\mathbf {y=2\sin(x)} \\&x=-{\frac {\pi }{3}}&x={\frac {\pi }{3}}\\\end{aligned}}}
∫ − π 3 π 3 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(\tan(x))-(2\sin(x))\right]dx}
tan ( x ) = 2 sin ( x ) tan ( x ) − 2 sin ( x ) = 0 x = 0 {\displaystyle {\begin{aligned}\tan(x)&=2\sin(x)\\\tan(x)-2\sin(x)&=0\\x&=0\\\end{aligned}}}
∫ − π 3 π 3 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x = ∫ − π 3 0 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x + ∫ 0 π 3 [ ( 2 sin ( x ) ) − ( tan ( x ) ) ] d x = 14 3 + 64 3 + 14 3 = 92 3 {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(\tan(x))-(2\sin(x))\right]dx=\int _{-{\frac {\pi }{3}}}^{0}\left[(\tan(x))-(2\sin(x))\right]dx+\int _{0}^{\frac {\pi }{3}}\left[(2\sin(x))-(\tan(x))\right]dx={\frac {14}{3}}+{\frac {64}{3}}+{\frac {14}{3}}={\frac {92}{3}}}
∫ − π 3 0 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x = [ ln | s e c ( x ) | + 2 cos ( x ) ] | − π 3 0 = [ ln | s e c ( 0 ) | + 2 cos ( 0 ) ] − [ ln | s e c ( − π 3 ) + 2 cos ( − π 3 ) | ] = [ 0 + 2 ] − [ ln ( 2 ) − 2 ( 1 2 ) ] = − 2 ln ( 2 ) − 1 = − 2 ln ( 2 ) − 1 {\displaystyle {\begin{aligned}\int _{-{\frac {\pi }{3}}}^{0}\left[(\tan(x))-(2\sin(x))\right]dx\\[2ex]&=\left[\ln |sec(x)|+2\cos(x)\right]{\Bigg |}_{-{\frac {\pi }{3}}}^{0}\\[2ex]&=\left[\ln |sec(0)|+2\cos(0)\right]-\left[\ln |sec(-{\frac {\pi }{3}})+2\cos(-{\frac {\pi }{3}})|\right]\\[2ex]&=\left[0+2\right]-\left[\ln(2)-2({\frac {1}{2}})\right]=-2\ln(2)-1\\[2ex]&=-2\ln(2)-1\end{aligned}}}
∫ 0 π 3 [ ( 2 sin ( x ) ) − ( tan ( x ) ) ] d x = [ 8 x − 2 x 3 3 ] | − 2 2 = [ 8 ( 2 ) − 2 ( 2 ) 3 3 ] − [ 8 ( − 2 ) − 2 ( − 2 ) 3 3 ] = [ 16 − 16 3 ] − [ − 16 + 16 3 ] = 32 − 32 3 = 64 3 {\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{3}}\left[(2\sin(x))-(\tan(x))\right]dx\\[2ex]&=\left[8x-{\frac {2x^{3}}{3}}\right]{\Bigg |}_{-2}^{2}\\[2ex]&=\left[8(2)-{\frac {2(2)^{3}}{3}}\right]-\left[8(-2)-{\frac {2(-2)^{3}}{3}}\right]\\[2ex]&=\left[16-{\frac {16}{3}}\right]-\left[-16+{\frac {16}{3}}\right]=32-{\frac {32}{3}}\\[2ex]&={\frac {64}{3}}\end{aligned}}}
Note: ∫ tan ( x ) d x = ∫ sin ( x ) cos ( x ) d x = ln | sec ( x ) | + C {\displaystyle {\text{Note: }}\int \tan(x)dx=\int {\frac {\sin(x)}{\cos(x)}}dx=\ln |\sec(x)|+C}
u = cos ( x ) d u = − sin ( x ) − d u = sin ( x ) d x {\displaystyle {\begin{aligned}u&=\cos(x)\\[2ex]du&=-\sin(x)\\[2ex]-du&=\sin(x)dx\end{aligned}}}
− ∫ ( 1 u ) d x = − ln | u | + C = ln | cos ( x ) − 1 | + C = ln | 1 c o s ( x ) | + C = ln | sec ( x ) | + C {\displaystyle {\begin{aligned}-\int ({\frac {1}{u}})dx&=-\ln |u|+C&=\ln |\cos(x)^{-1}|+C&=\ln |{\frac {1}{cos(x)}}|+C&=\ln |\sec(x)|+C\end{aligned}}}