∫ e − x d x , u = − x u = − x d u = − 1 d x ∫ e − x d x = − ∫ e u d u = − e u d u = − e − x + C {\displaystyle {\begin{aligned}&\int {e^{-x}}dx,u=-x\\[2ex]&u=-x\\[2ex]&du=-1dx\\[2ex]&\int {e^{-x}}dx=\\[2ex]&-\int {e^{u}}du=\\[2ex]&-e^{u}du=\\[2ex]&-e^{-x}+C\end{aligned}}}