All public logs
Jump to navigation
Jump to search
Combined display of all available logs of Burton Tech. Points Wiki. You can narrow down the view by selecting a log type, the username (case-sensitive), or the affected page (also case-sensitive).
- 16:19, 7 September 2022 Kevind75816@students.laalliance.org talk contribs created page 6.2 Trigonometric Functions: Unit Circle Approach/109 (Created page with "<math>f(x)=\sin(x)</math><br> <math>g(x)=\cos(x)</math><br> <math>h(x)=2x</math><br> <math>p(x)=\frac{x}{2}</math><br><br>")
- 15:49, 7 September 2022 Kevind75816@students.laalliance.org talk contribs created page 6.2 Trigonometric Functions: Unit Circle Approach/79 (Created page with " <math> \theta \rightarrow x=-3, \, y=4, \, r=5 </math><br><br> <math> -3^2 + 4^2 = 5^2 </math><br><br> <math> 9 + 16 = 25 </math><br><br> <math>\sqrt{25} = 5 = r </math><br><br> <math> \begin{align} \sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= \frac{5}{4}\\[2ex] \cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] \tan{(\theta)} &= \frac{4}{-3} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex] \end{align} </math>")
- 16:01, 1 September 2022 Kevind75816@students.laalliance.org talk contribs created page 6.2 Trigonometric Functions: Unit Circle Approach/47 (Created page with "<math>\frac{5\pi}{6} \Rightarrow \left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right)</math><br><br> <math> \begin{align} \sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1}=2\\[2ex] \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] \tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt...")
- 17:31, 30 August 2022 Kevind75816@students.laalliance.org talk contribs created page 6.2 Trigonometric Functions: Unit Circle Approach/17 (Created page with "<math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math> <math> \begin{align} \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\s...")
- 17:04, 23 August 2022 Kevind75816@students.laalliance.org talk contribs created page Kevin (Created page with "<math>/frac{f(b-f(a)}{b-a}")
- 16:45, 23 August 2022 User account Kevind75816@students.laalliance.org talk contribs was created automatically