6.2 Trigonometric Functions: Unit Circle Approach: Difference between revisions
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
\sin{(\theta)} &= \frac{y}{r} & \csc{(\theta)} &= \frac{r}{y}\\[2ex] | \sin{(\theta)} &= \frac{y}{r} & \csc{(\theta)} &= \frac{r}{y}\\[2ex] | ||
\cos{(\theta)} &= \frac{x}{r} & \sec{(\theta)} &= \frac{r}{x}\\[2ex] | |||
\tan{(\theta)} &= \frac{y}{x} & \cot{(\theta)} &= \frac{x}{y} \\[2ex] | |||
\end{align} | |||
</math> | |||
:1. The Six Trigonometric Functions (unit circle) <math>r=1</math><br> | |||
\ | :<math> | ||
\begin{align} | |||
\sin{(\theta)} &= y & \csc{(\theta)} &= \frac{1}{y}\\[2ex] | |||
\cos{(\theta)} &= y & \sec{(\theta)} &= \frac{1}{x}\\[2ex] | |||
\tan{(\theta)} &= \frac{y}{x} & \cot{(\theta)} &= \frac{x}{y} \\[2ex] | \tan{(\theta)} &= \frac{y}{x} & \cot{(\theta)} &= \frac{x}{y} \\[2ex] | ||
\end{align} | \end{align} |