5.4 Indefinite Integrals and the Net Change Theorem: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Line 3: Line 3:
== Lecture notes ==
== Lecture notes ==


== Solutions ==


[[5.4 Indefinite Integrals and the Net Change Theorem/1|1]]
[[5.4 Indefinite Integrals and the Net Change Theorem/1|1]]
Line 26: Line 27:
[[5.4 Indefinite Integrals and the Net Change Theorem/41|41]]
[[5.4 Indefinite Integrals and the Net Change Theorem/41|41]]
[[5.4 Indefinite Integrals and the Net Change Theorem/43|43]]
[[5.4 Indefinite Integrals and the Net Change Theorem/43|43]]
<!--
<math>\int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c</math>
<math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math>
let <math>a=x^2+1</math> and <math>b=a^{1/2}</math> then <math>\frac{da}{dx}=2x \text{ and } \frac{db}{da}=\frac{1}{2}a^{-1/2}</math>
<math>\frac{da}{dx}\frac{db}{da} = 2x\frac{1}{2}a^{-1/2} = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}</math>
-->

Revision as of 20:03, 23 August 2022

Lecture[edit]

Lecture notes[edit]

Solutions[edit]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43